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Buzzword.Bingo.Square 
    



      
A square struct and functions for the Multi-Player Buzzword Bingo game.
The square struct contains the fields phrase, points and marked_by
representing the characteristics of a square in the Multi-Player Buzzword
Bingo game.
Based on the course Multi-Player Bingo by Mike and Nicole Clark.

      


      
        Summary


  
    Types
  


    
      
        phrase()

      


        Square phrase



    


    
      
        points()

      


        Square points



    


    
      
        t()

      


        A square struct for the Multi-Player Buzzword Bingo game



    





  
    Functions
  


    
      
        mark(square, phrase, player)

      


        Marks a virgin square having the given phrase with the given player.



    


    
      
        new(buzzword)

      


        Creates a square struct from the given buzzword.



    


    
      
        new(phrase, points)

      


        Creates a square struct from the given phrase and points.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    phrase()


      
       
       View Source
     


  


  

      

          @type phrase() :: String.t()


      


Square phrase

  



  
    
      
      Link to this type
    
    points()


      
       
       View Source
     


  


  

      

          @type points() :: pos_integer()


      


Square points

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Buzzword.Bingo.Square{
  marked_by: Buzzword.Bingo.Player.t() | nil,
  phrase: phrase(),
  points: points()
}


      


A square struct for the Multi-Player Buzzword Bingo game

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    mark(square, phrase, player)


      
       
       View Source
     


  


  

      

          @spec mark(t(), phrase(), Buzzword.Bingo.Player.t()) :: t()


      


Marks a virgin square having the given phrase with the given player.

  
    
  
  Examples


iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Bottom Line", 375)
iex> arthur = Player.new("Arthur", "green_yellow")
iex> Square.mark(square, "Bottom Line", arthur)
%Square{
  phrase: "Bottom Line",
  points: 375,
  marked_by: %Player{name: "Arthur", color: "green_yellow"}
}

iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Big Picture", 225)
iex> arnold = Player.new("Arnold", "bright_turquoise")
iex> Square.mark(square, "Best of Breed", arnold)
%Square{phrase: "Big Picture", points: 225, marked_by: nil}

iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Best of Breed", 525)
iex> joe = Player.new("Joe", "light_cyan")
iex> jim = Player.new("Jim", "light_yellow")
iex> square = Square.mark(square, "Best of Breed", joe)
iex> Square.mark(square, "Best of Breed", jim)
%Square{
  phrase: "Best of Breed",
  points: 525,
  marked_by: %Player{name: "Joe", color: "light_cyan"}
}

  



  
    
      
      Link to this function
    
    new(buzzword)


      
       
       View Source
     


  


  

      

          @spec new(Buzzword.Cache.buzzword()) :: t() | {:error, atom()}


      


Creates a square struct from the given buzzword.

  
    
  
  Examples


iex> alias Buzzword.Bingo.Square
iex> Square.new({"Bottom Line", 375})
%Square{phrase: "Bottom Line", points: 375}

iex> alias Buzzword.Bingo.Square
iex> Square.new({"Bottom Line", 0})
{:error, :invalid_square_args}

  



  
    
      
      Link to this function
    
    new(phrase, points)


      
       
       View Source
     


  


  

      

          @spec new(phrase(), points()) :: t() | {:error, atom()}


      


Creates a square struct from the given phrase and points.

  
    
  
  Examples


iex> alias Buzzword.Bingo.Square
iex> Square.new("Bottom Line", 375)
%Square{phrase: "Bottom Line", points: 375}

iex> alias Buzzword.Bingo.Square
iex> Square.new("Bottom Line", 0)
{:error, :invalid_square_args}
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