

 Buzzword Bingo Square

 v0.1.34

 Table of contents

 	Modules

 	Buzzword.Bingo.Square

Buzzword.Bingo.Square

A square struct and functions for the Multi-Player Buzzword Bingo game.
The square struct contains the fields phrase, points and marked_by
representing the characteristics of a square in the Multi-Player Buzzword
Bingo game.
Based on the course Multi-Player Bingo by Mike and Nicole Clark.

 Summary

 Types

 phrase()

 Square phrase

 points()

 Square points

 t()

 A square struct for the Multi-Player Buzzword Bingo game

 Functions

 mark(square, phrase, player)

 Marks a virgin square having the given phrase with the given player.

 new(buzzword)

 Creates a square struct from the given buzzword.

 new(phrase, points)

 Creates a square struct from the given phrase and points.

 Types

 Link to this type

 phrase()

 View Source

 @type phrase() :: String.t()

Square phrase

 Link to this type

 points()

 View Source

 @type points() :: pos_integer()

Square points

 Link to this type

 t()

 View Source

 @type t() :: %Buzzword.Bingo.Square{
 marked_by: Buzzword.Bingo.Player.t() | nil,
 phrase: phrase(),
 points: points()
}

A square struct for the Multi-Player Buzzword Bingo game

 Functions

 Link to this function

 mark(square, phrase, player)

 View Source

 @spec mark(t(), phrase(), Buzzword.Bingo.Player.t()) :: t()

Marks a virgin square having the given phrase with the given player.

 Examples

iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Bottom Line", 375)
iex> arthur = Player.new("Arthur", "green_yellow")
iex> Square.mark(square, "Bottom Line", arthur)
%Square{
 phrase: "Bottom Line",
 points: 375,
 marked_by: %Player{name: "Arthur", color: "green_yellow"}
}

iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Big Picture", 225)
iex> arnold = Player.new("Arnold", "bright_turquoise")
iex> Square.mark(square, "Best of Breed", arnold)
%Square{phrase: "Big Picture", points: 225, marked_by: nil}

iex> alias Buzzword.Bingo.{Player, Square}
iex> square = Square.new("Best of Breed", 525)
iex> joe = Player.new("Joe", "light_cyan")
iex> jim = Player.new("Jim", "light_yellow")
iex> square = Square.mark(square, "Best of Breed", joe)
iex> Square.mark(square, "Best of Breed", jim)
%Square{
 phrase: "Best of Breed",
 points: 525,
 marked_by: %Player{name: "Joe", color: "light_cyan"}
}

 Link to this function

 new(buzzword)

 View Source

 @spec new(Buzzword.Cache.buzzword()) :: t() | {:error, atom()}

Creates a square struct from the given buzzword.

 Examples

iex> alias Buzzword.Bingo.Square
iex> Square.new({"Bottom Line", 375})
%Square{phrase: "Bottom Line", points: 375}

iex> alias Buzzword.Bingo.Square
iex> Square.new({"Bottom Line", 0})
{:error, :invalid_square_args}

 Link to this function

 new(phrase, points)

 View Source

 @spec new(phrase(), points()) :: t() | {:error, atom()}

Creates a square struct from the given phrase and points.

 Examples

iex> alias Buzzword.Bingo.Square
iex> Square.new("Bottom Line", 375)
%Square{phrase: "Bottom Line", points: 375}

iex> alias Buzzword.Bingo.Square
iex> Square.new("Bottom Line", 0)
{:error, :invalid_square_args}

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

